KSK Rollover 2015-2019

What We've Learned So Far

Edward lewis

ICANN

APRICOT 2019 26 February 2019

Agenda

- ⊙ KSK Rollover Project
 - $\circ\,$ Where it is
 - $\circ\,$ Audience "action"
- $\odot\,$ Reflections on Managing the Rollover
 - $\circ\,$ Role of Communications
 - \circ Monitoring
 - \circ Measurements
- $\odot\,$ Lessons/Questions for the Next Time

KSK Rollover Project

 ⊙ Goal: Replace the key (KSK) used to sign the DNS root zone's DNSSEC key set since 2010 without disruption

Passed many milestones, a few more to go
 Next up: removing the revocation record for the out-going KSK on March 22

Where It Is

2015	2016	2017	2018	2019
Design Team	Plans Made; Key Created	Publicize; The "Pause"	Publicize; Change Key	Revoke; Clean Up

 A key rollover can be done more quickly, but "going fast" has never been the goal

Audience "Actions"

- Have you done nothing so far and have seen no problems?
 Continue what you are doing!
- Have you been relying on Automated Updates (RFC 5011)?
 Continue what you are doing!
- Are you manually managing the configuration of DNSSEC trust anchors?

 \circ Remove the old key (2010) from trust anchors.

Project Considerations

- \odot The KSK is a private-public key pair
- IANA Functions Operator uses the private key to sign the "top" of the DNSSEC hierarchy
- Validator operators configure their DNSSEC validating servers with the **public key**

The Project's "Problem to Solve"

- Rolling the Private Key
 Simple
- Rolling the Public Key Simple
- \odot Coordinating the actions
 - Difficult
 - \odot An exercise in communications

Technical Tools

- ⊙ Automated Updates of DNSSEC Trust Anchors
 - Also known as "RFC 5011"
 - Some don't like idea of self-configuring edge devices, others rely on the convenience
- ⊙ A functional but difficult to manage protocol
 - Proven (albeit in few cases)
 - \odot DNS lacks measurement hooks
 - \odot DNS lacks testing hooks
 - \circ Requires attentive operators

The Permission-less Internet

- Permission-less means operators make their own choices and are responsible for their actions
- \odot This has enabled DNS to scale very well
- But
 - *Automated Updates* is a choice, not required
 No list of operators configuring the key
 Not easy to "snoop", no pervasive monitoring

Approach to the Rollover

- \odot Communications
- \odot Technical management
 - Testing
 - \circ Monitoring
 - \circ Measurement

Communications to/with an Unknown Audience

- ⊙ Permission-less: No list of audience members
- $\odot\,$ Timing of messages
 - o Different skill sets
 - Different focus
 - Different forums
- \odot Conferences
- Media engagements
 Interviews
- \odot Letters

Adventures in Testing

- ⊙ The live system is very constrained
 - \odot Can't use the key outside it's production use
 - \odot DNSSEC is not favorable to test cases
 - Cannot isolate use of a specific key for specific data
- ⊙ Test beds for software 'capabilities' benefits developers
- \odot Test beds for configurations was not too popular

Adventures in Monitoring

- Many tried to design a way to "third-party" test operator readiness
 - \circ No promising efforts
 - Rising concerns of pervasive monitoring and desires for privacy, we are getting further from this
- Nevertheless, IETF rushed to define "Signaling Trust Anchor Knowledge in DNS Security Extensions (DNSSEC)" (RFC 8145)
 And then a replacement for that...

Key Tag Reports, 01 September 2017-14 February 2019

Key Tag Reports, 01 September 2017-14 February 2019

Experience with Signaling Trust Anchor Knowledge in DNSSEC

- ⊙ Due to "newness" : biased towards "new code only"
- Represents small population of operators
 Large in number, small in percentage
- ⊙ Buggy implementation(s) skew results significantly
- Still, the statistics were discouraging and led to a 1 year delay
 Looking back, this measurement is not reliable

Key Tag Reports, 1 February 2019 - 14 February 2019, "Percent" only

Key Tag Reports, 1 February 2019 - 14 February 2019, "Percent" only

Adventures in Measurement

- ⊙ Measuring impact
- \odot Queries seen at the DNS root servers for DNSKEY records
- In theory we shouldn't see a sustained change from event to event in the roll – perhaps brief rises during transitions
 O But we are seeing something different

Counting Queries

- Next slides show the counts of queries for the root zone's DNSKEY set
 - A measure of resolvers doing DNSSEC and needing to update the key set
 - First simple counts during the months of the Rollover (October 2018) and Revocation (January 2019)
 - Second comparing individual resolver's query rates before and after some event (changed behavior is a symptom)

DNSKEY queries seen at "most of" the DNS Root Servers

DNSKEY queries seen at "most of" the DNS Root Servers

Oct 10 vs. Oct 14 and Oct 14 vs. Jan 14 ("problem" to "fixed")

OCT-11

Oct 10 vs. Jan 14 (same total span of time)

- ⊙ This simply shows a return to "normalcy"
- ⊙ No sustained "shift" around the change in signing key

Before and After the Rollover (Key Change)

14

12

10

Before and After the Revocation (10 Jan vs. 14 Jan)

Next Steps

We need to collect data for a longer timespan
 In March the revocation DNSKEY record is removed
 Will we return to the old "normal" levels?
 Premature to draw conclusions

 \odot Should understand changes when none is expected

○ Common assumption: unused/ignored machines? That many?

Other Observations of the Rollover

 \odot In 2015, discussions were theoretical, academic

- Nature of "trust", what is the true "top key"
- \odot Preferred ways to get new key
- \odot Design measurements, testbeds
- ⊙ Doing it made it real
- ⊙ By 2018, practical considerations
 - \odot Include the new key in DNS software
 - \odot Use email and surveys to reach operators
 - \circ "Get it done"

The Future of Measurement/Monitoring

- ⊙ Why aren't there effective tests or measures?
 - \odot Knowledgeable people tried
 - \odot The DNS is not built to make this easy
- ⊙ What then?
 - Look for alternatives
 - Different expectations
 - Innovate/change coordination model

Lessons in perspective

⊙ The rollover effort once again highlights the continuing need of out-of-band ("people") coordination to make the DNS work

Variations of code and of configurations still are an issue
 Noted in *Development of the Domain Name System* (1988)

 There remain fundamental issues with achieving a manageable and secure distributed, federated system

Engage with ICANN

